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Abstract— Array-like structures constitute a significant share
of scientific data. As arrays are not adequately supported as
first-class citizens in traditional database systems, array DBMS
technology has emerged offering bespoke query and storage
support. On physical level, one challenge in such systems is to
find performance efficient partitionings (”tilings”) of large, multi-
dimensional arrays.

We propose a storage layout language for arrays which embeds
into the query language and gives users comfortable, yet concise
control over important physical tuning parameters. Further, this
sub-language wraps several strategies which we have found useful
in face of massive spatio-temporal data sets. We motivate the need
for such a language through performance observations, describe
tiling strategies implemented, and introduce the language making
these accessible through DML statements.

I. INTRODUCTION

A decent part of the huge and massively growing scientific
data sets consists of regularly sampled phenomena. Such
data structures can be stored conveniently as arrays, in a
programming language sense. Typically, each single array
containing such spatio-temporal data acquisitions tends to
be large in itself, ranging into multi-Terabytes. It poses a
substantial challenge to database systems to maintain such
data with an adequate level of query support at a satisfying
performance.

Array DBMSs such as rasdaman [1][2], AQL [3], AML [4],
MonetDB [5], TerraLib [6], and the announced SciDB [7]
support the array data structure as first-class citizens. Their
query languages operate on arrays stored in various ways,
such as BLOBs [8][6], NetCDF files [4], and tuple-based [5].
All systems have in common that on physical level some
partitioning is applied to the large arrays, be it coarse-grain (as
with BLOBs and NetCDF) or fine-grain (such as tuple-based
storage). In particular for dense arrays, partitioning – which
has been introduced by the image processing community
decades back – can be considered an established, commonly
accepted technique.

Obviously, however, there is a large degree of freedom on
how to split arrays. This raises the question: what is the best
– or at least a good – array partitioning scheme? As it turns
out, there is not a single optimal scheme, although for specific
raster structures and query workloads good schemes can be
found as we will show below. Several strategies for estab-

Fig. 1. Sample 2-D and 3-D tilings

lishing partitionings have been proposed in literature, such as
matrix paging in virtual memory [9], chunking [10][11][12]
and tiling [13]. Investigations have revealed that partitionings
suitably adapted to a query workload can yield performance
gains of 5.5 over a default partitioning [13]. This potential for
access performance improvement is confirmed in [12].

In the rasdaman system, five strategies are currently imple-
mented which all are parametrized to give further fine-grain
control over the storage layout [8]. Figure 1 shows sample
storage layouts of 2-D and 3-D rasdaman objects.

In the first step, this functionality has been provided via
the C++ API. Handling this requires advanced programming
skills. As it turns out, upon database design and population
administrators and possibly also users should have control
over physical storage layout, and this not at the expense of
writing C++ code. Therefore, we have developed a physical
storage layout language integrated with the rasdaman query
language, which we present in this contribution. We address
the consequential question, how can a DBMS give control over
array storage layout in a suitable manner?

To this end, the remainder is structured as follows. The
next section introduces basic terminology. Section III presents
the storage layout sub-language and the different strategies
supported. Related work is addressed in Section IV; Section V
concludes the paper.

II. ARRAY MODEL AND TERMINOLOGY

We only need the basics of the overall array model.
Although we use the rasdaman model [1] with its rasql



query language [2], definitions generalize to virtually all array
models we are aware of.

An array has some dimension d ¡ 0 with an ordered list
of axes (also called dimensions) a1, .., ad. The extent of an
array a, its spatial domain sdompaq, is an axis-parallel subset
of Euclidean space Zd. Lower and upper bounds of array
axis i are expressed as sdompaqris.lo and sdompaqris.hi,
resp. Associated with each coordinate position within the
array’s domain are cells which all share the same cell type.
A partitioning of an array into contiguous, non-overlapping
sub-arrays – called tiles – is called a tiling.

Following the ODMG standard [14], arrays in rasdaman are
grouped into collections, the ODMG equivalent of relational
tables. A rasdaman collection has two columns holding a
system-maintained OID and the array itself. Both collections
and arrays are typed.

III. ARRAY STORAGE LAYOUT SUB-LANGUAGE

In this section we present a storage layout language for
arrays. It allows to define parametrized tiling strategies along
the line introduced previously, and additionally supports spec-
ification of the storage encoding inside tiles, compression
methods to be applied, and tile index methods.

Looking at relational DBMSs we see that storage related
directives are part of the DDL. This does not seem wise
in the array case – too large is the divergence on object
level. Therefore, in rasdaman these storage directives are not
attached to array or collection type definition, but to the insert
statement.

The rasql statement for creating a new array instance
in some collection and initializing it with given values is
augmented with a series of optional storage clauses1:

insert into Name
values ArrayExpr ( StorageDirectives )?

A. Tiling Strategies

The task we focus on can be described as follows: For an
array to be created in the database, create a tiling which
respects some given constraints. A tiling here is understood as
a description of a set of tiles which together make up the array,
without overlaps; such a tile description consists of an extent
definition and does not contain any cell data, hence it is small
in size. We first present the overall insertion algorithm and
then discuss the various strategies plugged into it. A detailed
description of the rasdaman tiling strategies is available in [8].

Following [13], tiling can be categorized into aligned and
non-aligned (Figure 2). A tiling is aligned if tiles are de-
fined through axis-parallel hyperplanes cutting all through the
domain. Aligned tiling is further classified into regular and
aligned irregular depending on whether the parallel hyper-
planes are equidistant (except possibly for border tiles) or not.
The special case of equally sized tile edges in all directions

1In grammar expressions we enclose optional elements in ”(...)?” to avoid
confusion with brackets, which can occur as terminals. Non-terminals are
capitalized.

Fig. 2. Types of tiling

is called cubed. Non-aligned tiling contains tiles whose faces
are not aligned with those of their neighbors. This can be
partially aligned with still some hyperplanes shared or totally
non-aligned with no such sharing at all.

The following two-pass algorithm inserts an array into the
database as a tile set. It is a refined version of the one originally
proposed by Furtado [13]. The method, the code of which is
shown in Algorithm 1, takes an array a, a target collection
c, a tiling specification tilingSpec, and a tile size limit
tMax, measured in bytes, to generate a copy of the array data
in the database which is tiled accordingly.

Algorithm 1 TILEANDINSERTARRAY

Require: a: array to be retiled and inserted.
Require: c: collection to receive the new array.
Require: tilingSpec: parameters describing the tile structure

requested.
Require: tMax: maximum tile size

1: Tiling tileDomain := tile( sdom(a), tilingSpec, tMax );
2: OID newArray := createArray( c );
3: for all td in tileDomain do
4: Tile t := m.intersect( td );
5: newArray.insertTile( t );
6: end for

At the heart of this algorithm is function tile() which gener-
ates a tiling. Like a virtual function, this is substituted by one
of the tiling strategies. Parameter tilingSpec contains further
input specific to each algorithm. Additionally, all algorithms
respect the tile size limit. This is useful as a ”security belt” to
not overly penalize queries not following the particular access
pattern for which the tiling has been generated. An experiment
comparing several open-source and commerical DBMSs shows
that a suitable tile size on today’s PC architectures is in
the range of a few Megabytes [15]. Function createArray()
establishes a new array in the given collection returning a
persistent identifier. Subsequently, the new array is filled tile
by tile. This involves fetching input cell batches by calling
method intersect() and making the new tiles persistent through
insertTile(). In the rasdaman C++ API, this functionality is
available through the class hierarchy shown in Figure 3.

1) Aligned Tiling: In this scenario we assume some varying
degree of knowledge about the subsetting patterns arriving
with the queries. We may or may not know the lower corner
of the request box, the size of the box, or the shape (i.e.,
edge size ratio) of the box. For example, map viewing clients



Fig. 3. Tiling API class hierarchy in rasdaman

typically send several requests of fixed extent per mouse click
to maintain a cache of tiles in the browser for faster panning.
So the extent of the tile is known – or at least that tiles are
quadratically. The absolute location often is not known, unless
the client is kind enough to always request areas only in one
fixed tile size and with starting points in multiples of the tile
edge length.

Such kind of knowledge we want to give to an algorithm
to construct an efficient tiling. We assume a uniform location
distribution pattern where the location of the lower corner
position of the request box has a constant probability. This al-
lows us to abstract from a tile’s domain to the tile shape which
represents its extent in a position invariant way. Formally, we
introduce a tile configuration which, for some d-dimensional
tile t with lower bounds tris.hi and upper bounds tris.hi for
dimension 1 ¤ i ¤ d, is given by d-tuple tc � ptc1, ..., tcdq
where

tci � tris.hi� tris.lo� 1

Such tile configurations will constitute the input for the
aligned tiling algorithm. They can be obtained, for example,
by averaging over the request areas ri reported for n queries
in the log file:

tci �
ņ

j�1

pj � prjris.hi� rjris.lo� 1q

In presence of a tile size limit the best strategy is regular
tiling based on tile configuration tc as originally proposed by
Sarawagi and Stonebraker [10] because it minimizes the aver-
age amount of extra data read. If additionally the configuration
follows a uniform probability distribution or all accesses are
to points – in both cases tci � const@i holds – then a cubed
tiling is optimal.

In the storage directives, regular tiling – which also is the
system default – is specified by providing a bounding box list,
TileConf, and an optional maximum tile size:

tiling regular TileConf (tile size Int)?

For example, this line below dictates tiles to be of size 1024�
1024, except possibly for border tiles which can be smaller:

tiling regular [ 1024, 1024 ]

However, we may not know a good tile shape for all
dimensions, but only some of them. In line with our previous

Fig. 4. Aligned tiling examples

Fig. 5. Aligned tiling examples with preferential access directions

definition we call an axis p P t1, ..., du which never partici-
pates in any subsetting box a preferred direction of access and
denote this as tcp � �. The optimal tile structure extends to
the array bounds in the preferential directions.

Practical use cases include satellite image time series stacks
over some region. Grossly simplified, during analysis there
are two distinguished access patterns (notwithstanding that
others occur sometimes as well): either a time slice is read,
corresponding to tc � p�, �, tq for some given time instance t,
or a time series is extracted for one particular position px, yq
on the earth surface; this corresponds to tc � px, y, �q.

The aligned tiling algorithm creates tiles as large as possible
based on the constraints that (i) tile proportions adhere to tc
and (ii) all tiles have the same size. The upper array limits
constitute an exception: for filling the remaining gap (which
usually occurs) tiles can be smaller and deviate from the
configuration sizings. Figure 4 illustrates aligned tiling with
two examples, for configuration tc � p1, 2q (left) and for tc �
p1, 3, 4q (right). Preferential access is illustrated in Figure 5.
Left, access is performed along preferential directions 1 and
2, corresponding to configuration tc � p�, �, 1q. The tiling to
the right supports configuration tc � p4, 1, �q with preferred
axis 3.

Syntactically, aligned tiling receives a tiling configuration
expressed as a list of bounding boxes, again with an optional
maximum tile size:

tiling aligned TileConf (tile size Int)?

The following example accommodates map clients fetching
quadratic images known to be no more than 512� 512� 3 �
786, 432 bytes:

tiling aligned [1,1] tile size 786432

The aligned tiling algorithm consists of two steps. First,
a concrete tile shape is determined. After that, the extent of
all tiles is calculated by iterating over the array’s complete
domain.

In presence of more than one preferred directions – i.e.,
with a configuration containing more than one ”*” values



Fig. 6. Directional tiling examples for 2-D and 3-D

– axes are prioritized in descending order. This exploits the
knowledge that array linearization is performed in a way that
the ”outermost loop” is the first dimension and the ”innermost
loop” the last. Hence, by clustering along higher coordinate
axes a better spatial clustering is achieved.

2) Directional Tiling: Sometimes the application seman-
tics prescribes access in well-known coordinate intervals. In
OLAP, such intervals are given by the semantic categories of
the measures as defined by the dimension hierarchies, such
as product categories which are defined for the exact purpose
of accessing them group-wise in queries [16]. Similar effects
can occur with spatio-temporal data where, for example, a
time axis may suggest access in units of days, weeks, or
years. In rasdaman , if bounding boxes are well known then
spatial access may be approximated by those; if they are
overlapping then this is a case for area-of-interest tiling, if
not then directional tiling can be applied.

For some d-dimensional array, let d dimension partitions
parti :� ppi,1, ..., pi,ni

q be given where pi,1   ...   pi,ni
and

ni ¥ 0 for all i � 1, ..., d. Each pi,j denotes a tile border.
The lowest and highest boundary, pi,1 and pi,ni , by definition
coincide with the corresponding array’s extent limits. The
pi boundaries themselves belong to the next lower partition,
except for p1 where the lower array bound is assigned to
the first partition. The special case that dimension i is not
subdivided into any categories is described by a partition
parti � ppi,1, pi,2q with ni � 2 for all i. A further special
case, ni � 0, will be addressed later.

The tiling corresponding to such a partition is given by its
Cartesian product:

Apart �
d¡

i�1

parti

� trp1,j1 : p1,j1�1, ..., pd,jd�1
: pd,jds :

pi,j P parti, ji � 1, ..., ni, i � 1, ..., du

Figure 6 shows such a structure for the 2-D and 3-D case.
To construct it, the partition vectors are used to span the
Cartesian product first. Should one of the resulting tiles exceed
the size limit, as it happens in the tiles marked with a ”*” in
Figure 6, then a so-called sub-tiling takes place. Sub-tiling
applies regular tiling by introducing additional local cutting
hyperplanes. As these hyperplanes do not stretch through all
tiles the resulting tiling in general is not regular.

The resulting tile set guarantees that for answering queries
using one of the subsetting patterns in part, or any union of
these patterns, only those cells are read which will be delivered
in the response. Further, if the area requested is smaller than
the tile size limit then only one tile needs to be accessed.

Fig. 7. Directional tiling of a 3-D cube with one degree of freedom

Sometimes axes do not have categories associated. One
possible reason is that subsetting is never performed along
this axis, for example in an image time series where slicing is
done along the time axis while the x/y image planes always
are read in total. Similarly, for importing 4-D climate data into
a GIS a query might always slice at the lowest atmospheric
layer and at the most current time available without additional
trimming in the horizontal axes.

We call such axes preferred access directions in the context
of a directional tiling, they are identified by empty partitions:
parti � pq, ni � 0. To accommodate this intention expressed
by the user the sub-tiling strategy changes: no longer is regular
tiling applied, which would introduce undesirable cuts along
the preferred axis, but rather are subdividing hyperplanes
constructed parallel to the preference axis. This allows to
accommodate the tile size maximum while, at the same time,
keeping the number of tiles accessed in preference direction
at a minimum.

Formally, sub-tiling an array a in presence of tile size limit
tmax attempts to create d-dimensional tiles which are full
domain cuts in the dimensions specified as preferred, and cuts
of edge size e in all others whereby e is given by

e �

[
d�k

d
tMax{cellsize±k

i�d�1 psdompaqris.lo� sdompaqris.hi� 1q

_

In Figure 7, a 3-D cube is first split by way of directional
tiling (left). One tile is larger than the maximum allowed,
hence sub-tiling starts (center). It recognizes that axes 0 and 2
are preferred and, hence, splits only along dimension 1. The
result (right) is such that subsetting along the preferred axes
– i.e., with a trim or slice specification only in dimension 1 –
can always be accommodated with a single tile read.

Directional tiling specification follows this syntax:

tiling directional SplitList
( with subtiling ( tile size Int )? )?

where SplitList is a list of split vectors
pt1,1, ..., t1,n1

q, ..., ptd,1, ..., td,nd
q. Each split vector consists

of an ascendingly ordered list of split points for the tiling
algorithm, or an asterisk ”*” for a preferred axis. The split
vectors are positional, applying to the dimension axes of
the array in order of appearance. For example the following
defines a directional tiling with split vectors p0, 512, 1024q
and p0, 15, 200q for axes 1 and 3, respectively, with dimension
2 as a preferred axis:

tiling directional
[0,512,1024], [*], [0,15,200]



Fig. 8. Steps in the area-of-interest tiling algorithm

But what if an axis does not have any predefined categories,
but neither is a preferred axis? Actually, this is a common
scenario in all spatio-temporal raster data, such as geologi-
cal, atmospheric, ocean, or remote sensing data, when data
are stitched together into so-called seamless maps covering
large areas: Access in the horizontal latitude and longitude
directions practically always involves trimming to extract a
region of interest; consequently, these axes are not preferred
according to our definition. On the other hand, bounding boxes
often do not follow any fixed pattern, but are chosen randomly.
Selection through the user by drawing a bounding box is a
method which rarely results in the same coordinate box again.

This case is distinguished by ni � 1 and parti �
psdompaqris.lo, sdompaqris.hiq. Domain splitting in this case
is performed normally, including regular tiling when it comes
to sub-tiling. In other words, non-preferred axes represent a
degree of freedom for the algorithm to achieve matching tile
sizes. if ever possible, no subtiling should be done on preferred
axes; that said, in some circumstances – when partitions are
too large compared to the maximum tile size permitted – it
can become unavoidable.

3) Areas of Interest Tiling: An area of interest is a fre-
quently accessed sub-array of an array object. An area-of-
interest pattern, consequently, consists of a set of domains ac-
cessed with an access probability significantly higher than that
of all other possible patterns. Goal is to achieve a tiling which
optimizes access to these preferred patterns; performance of
all other patterns is ignored.

The tiling algorithm corresponding to this pattern receives as
input parameters the obligatory size limit, plus a list of areas
of interest areasj for j � 1, ..., n with n ¡ 0, plus a tile
configuration parameter, tc, which will be explained lateron.
We begin with the areas of interest:

areasj � r areasjr1s.lo : areasjr1s.hi,

...,

areasjrds.lo : areasjrds.hi s

All areas are assumed to reside completely inside the domain
of a, that is:

@area P areas : sdompaq.containspareaq

Areas of interest give hints on constructing an appropriate
tiling, but the tiles generated are not identical to these areas.

An area of interest can be contained in a single tile, but it can
also be composed of a group of adjacent tiles. The strategy
is to construct tiles in a way that the amount of data and the
number of tiles accessed for retrieval of any area of interest
are minimized. More exactly, it is guaranteed that accessing
an area of interest only reads data belonging to this area.

Figure 8 gives an intuition of how the algorithm works.
Given some area-of-interest set (a), the algorithm first parti-
tions using directional tiling based on the partition boundaries
(b). By construction, each of the resulting tiles (c) contains
only cells which all share the same areas of interest, or none
at all. As this introduces fragmentation, a merge step follows
where adjacent partitions overlapping with the same areas of
interest are combined. Often there is more than one choice to
perform merging; the algorithm is inherently nondeterministic.
We exploit this degree of freedom and cluster tiles in sequence
of dimensions, as this represents the sequentialization pattern
on disk and, hence, is the best choice for maintaining spatial
clustering on disk (d,e). In a final step, sub-tiling is performed
on the partitions as necessary, depending on the tile size limit.
In contrast to the directional tiling algorithm, an aligned tiling
strategy is pursued here making use of the tile configuration
argument, tc. As this does not change anything in our example,
the final result (f) is unchanged over (e).

For applying the area-of-interest method a list of boxes is
required, together with the optional size limit:

tiling area of interest TileConf
( tile size Int )?

As discussed earlier, these areas do not have to fully cover the
array, and the may well overlap. Here is an example:

tiling area of interest
[0:20,0:40],[945:980,980:985],
[10:1000,10:1000]

4) Statistic Tiling: Area of interest tiling requires enumer-
ation of a set of clearly delineated areas. Sometimes, however,
retrieval does not follow such a focused pattern set, but rather
shows some random behavior oscillating around hot spots.
This can occur, for example, when using a pointing device
in a Web GIS: while many users possibly want to see some
”hot” area, coordinates submitted will differ to some extent.

We call such a pattern multiple accesses to areas of interest.
Area of interest tiling can lead to significant disadvantages
in such a situation. If the actual request box is contained in
some area of interest then the corresponding tiles will have to
be pruned from pixels outside the request box; this requires a
selective copying which is significantly slower than a simple
memcpy(). More important, however, is a request box going
slightly over the boundaries of the area of interest – in this
case, an additional tile has to be read from which only a small
portion will be actually used. Disastrous, finally, is the output
of the area-of-interest tiling, as an immense number of tiny
tiles will be generated for all the slight area variations, leading
to costly merging during requests.

This motivates a tiling strategy which accounts for statis-



tically blurred access patterns. The question, then, is: how
can we derive a meaningful tiling pattern from arbitrarily
distributed request boxes? We remember the trade-off between
fine-grain tiling, which shows a good adaptation to any user
pattern, but increased read and merge overhead due to the
large number of tiles accessed, and coarse-grain tiling, where
more cells are transported to main memory in vain, but tile
handling overhead is smaller. Note that, access patterns like
above where boundaries vary only a little, but very individually
a fine-grain tiling – and likewise an area of interest tiling, for
that matter – can lead to an extremely high number of very
small tiles. Hence, we feel some preference for a coarse-grain
tiling; to avoid its disadvantages at least to some extent we can
limit the overhead incurred. The strategy, then, is to perform
a merge in the area of interest tiling only to an extent where
the overhead for reading excess data does not exceed a given
threshold.

This heuristic is the idea behind statistic tiling. The statistic
tiling algorithm receives a list of access patterns plus border
and frequency thresholds. The algorithm condenses this list
into a smallish set of patterns by grouping them according to
similarity. This process is guarded by the two thresholds. The
border threshold determines from what maximum difference
on two areas are considered separately. It is measured in
number of cells to make it independent from area geometry.
The result is a reduced set of areas, each associated with
a frequency of occurrence. In a second run, those areas are
filtered out which fall below the frequency threshold. Having
calculated such representative areas, the algorithm performs an
area of interest tiling on these. This method has the potential
of reducing overall access costs provided thresholds are placed
wisely. Log analysis tools can provide estimates for guidance.

In the storage directive, statistical tiling receives a list of
areas plus, optionally, the two thresholds and a tile size limit.

tiling statistic TileConf
( tile size Int )?
( border threshold Int )?
( interest threshold Float )?

The following example specifies two areas, a border threshold
of 50 and an interest probability threshold of 30%:

tiling statistic [0:20,0:40],[30:50,70:90]
border threshold 50
interest threshold 0.3

B. Indexing Directive

The indexing directive determines the spatial index to be
used for tile lookup. The corresponding syntax is:

index IndexName ( IndexConfig )?

In IndexConfig, additional parameters like tree node fill
factors are foreseen to be passed in future. Default is the
R+-Tree [17], which also can be specified explicitly through
its name, rpt index. Several more index types exist, some
of them streamlined for particular tiling schemes [2]. For

example, the RC index provides a flat tile directory lookup
for arrays where all tiles have the same layout and the array’s
overall domain is fixed. This index, which for aligned tiling
is faster than a tree, is chosen through

index rc_index

Attempting to combine some tiling with an unsuitable index
will lead to an error.

C. Storage Directives

This directive determines the storage layout of tiles. Overall
syntax is:

storage StorageType ( Compression )?

Storage type array specifies that tiles will be stored in
the server’s main memory representation. The bare array
format avoids any encoding and decoding and, hence, has a
potential to be particularly fast. That said, a compressed tile
representation, due to its smaller footprint on disk, may lead
to faster loading and writing which, in the extreme case, might
outperform the overhead of running the codec. Therefore,
relative performance of the various storage techniques depends
very much on the data characteristics. For example, experience
says that ”natural” images like satellite pictures achieve a
reduction to about 80% by using compression type zlib
whereas ”generated” images like road map layers or elevation
iso-lines can be reduced to typically 6% of their original
volume by specifying packbits compression.

In addition to pure array storage tiles also can be encoded
in one of several well-known data formats, such as TIFF,
JPEG, and PNG with storage names tiff, jpeg, and png,
respectively. Obviously, a necessary condition is that the array
cell type can be represented by the data format, and likewise
for the array’s dimensionality – TIFF cannot hold 36-band
satellite image time series cubes.

D. Compression Directives

An alternative to the standard compression techniques built
into data formats, which usually have restrictions like support-
ing only 2-D, is the generic array format with its choice of
compression methods. The extended array directive has this
syntax:

storage array
compression Comp ( CompParams )?

Among the supported compression types are zlib, rle,
packbits, and wavelet. The zlib method [18] is a
lossless technique relying on an LZ77 variant called deflation.
The same technique (actually, the same code) can be found in
the widely used gzip utility. With the modifier separate
attached, zlib compression performs compression for each
component of a structured cell separately, rather than consid-
ering the whole cell bit string as one item.

Compression variant rle performs a run-length encoding. It
likewise knows the modifier separate for component-wise
compression.



Fig. 9. Tiling scheme used by OpenStreetMap [21] (Map data (c) Open-
StreetMap contributors, CC-BY-SA)

Often better than rle is packbits which resembles
CCITT G7 compression as used in fax transmission [19]. The
reason behind is as follows. While end-of-line situations in
rle break the counting and collecting process and starts a
new token, packbits can continue its run-length encoding
past end of lines.

Wavelets comprise a further compression type family [20].
A significant difference to the previously mentioned alterna-
tives is that they are inherently lossy, except for very specific
(and less effective) parameter values. Wavelet variants sup-
ported by rasdaman are haar, qhaar, daubechies[n],
least[n], and coiflet[n] for integer values n.

E. Example

Finally, we present a comprehensive insertion example
which combine the storage directives introduced:

insert into MyCollection
values ...
tiling area of interest

[0:20,0:40],[45:80,80:85]
tile size 1000000

index d_index
storage array compression zlib

This rasql statement defines two areas of interest and a
maximum tile size of a million cells. The index chosen is
d index, a simple directory. Storage format is the native
processor encoding, array, in combination with compression
technique zlib.

IV. RELATED WORK

Tiling is not specific to array databases. OpenStreetmap [21]
uses a tiling scheme which is adapted to usual access patterns,
as shown in Figure 9.

Re-focusing on the domain of array databases supporting
scientific data we first note that with all database approaches
listed, physical aspects can be controlled by the general DBMS
parameters, such as tablespace assignment and page sizes.
This, however, is on another semantic level than our discus-
sion, representing an additional category of tuning parameters.

A prototype implementation of the Array Query Language
(AQL) [3][22] has been done in SML, a general-purpose
functional programming language; this implementation is not

reported to act as a database server which can handle effi-
ciently arrays much larger than main memory, but it allows
reading and processing data files containing arrays. Array
Manipulation Language (AML) [4] is implemented as a Mat-
Lab module where images are stored in files. Hence, in both
cases there is no dedicated storage management. RAM, the
array sub-model of the MonetDB DBMS, is using tuple-based
storage [5], so there is no array storage management in the
sense discussed in this paper.

Predator supports 2-D arrays through an Abstract Data Type
(ADT) concept [23], but without any storage layout control
by the user. Another recent technology is WKT Raster [24],
an extension to PostGIS. WKT Raster ties 2-D raster data
into the PostGIS query processing. Its conceptual model does
not foresee an interal tiling of arrays, this is left to the user.
TerraLib [6] performs a regular tiling of 2-D arrays. SciDB [7]
is a scientific DBMS under development, no hints about
storage management strategies as discussed in this paper are
known yet. Seminal work by Sarawagi and Stonebraker [10]
has introduced chunking. Sarawagi and Stonebraker follow an
approach [10] similar to our aligned tiling method. However,
they do not use tile configuration, only the concrete tile shape
which is given by absolute edge lengths. We consider this
less convenient for users because they do not necessarily
know other influential parameters like system-optimal tile size.
Further, this method does not support direction preferences.
Recently, this work by Sarawagi and Stonebraker has been
refined by Rotem et al [12].

In the commercial world there are Oracle [25] and ESRI
ArcSDE [26] which offer tiled storage of 2-D imagery in
databases. Both rely on a hardcoded regular tiling, in our
classification, with no choice in tiling parameters.

V. CONCLUSIONS

We have presented a storage layout language which intro-
duces easy-to-use QL-level tuning for subsetting queries in
array databases. In detail, the language proposed allows to
specify tiling layout for a given array, the tile index to be
used, and the encoding format to be used inside the tiles
including optional compression. This way, physical parameters
in array databases can be controlled in a user-friendly way (as
compared to writing C++ programs) and to an extent which
covers all array DBMS tuning parameters and their degrees
of freedom known today. That said, the language is open
enough to accommodate addition of new choices for existing
parameters (such as new tiling strategies) as well as further
parameters which may turn out relevant.

Practical use of such a storage tuning is manifold in sci-
entific databases. In 2-D remote sensing, large satellite image
maps can be adjusted to user access behavior, thus speeding
up response times; OpenStreetMap is an example. For 3-D
and 4-D data, the gain is even more substantial as today’s
storage pattern often is determined by the structure delivered
during data ingest, that is: flat x/y files of t and z thickness
1. While this is convenient for the loading access pattern
as well as x/y access it is disastrous for time series access



(”temperature curve for the last 20 years over Sydney”) or
height profile access (”temperature in the atmosphere over
Sydney” or ”ocean salinity over depth at point x/y”). By
orienting tiling towards data users instead of ingest tools the
formers’ retrieval experience can be improved significantly.
We feel that, in addition to the advaantages described on such
spatio-temporal data sets the versatile tiling described in this
paper can also serve to improve performance on statistical data
cubes, thereby contributing to MOLAP technology. However,
this remains to be proven experimentally.

The tiling sub-language is implemented as part of the
rasdaman query language, rasql . The directives have been
used routinely, for example, to establish the array objects used
for the EarthLook [27] interactive online demonstration of
open geo services.

Future work includes a systematic performance and use
evaluation of the storage techniques, which constitutes a wide
field given the various strategies and parameters available,
relevant data properties like sparsity, and use-case specific
access patterns. One possible extension is to instrument the
update statement to allow changing the storage layout of an
already existing object. Alternatively – or better: additionally
– it could be permitted with a DDL statement, possibly as a
default which can be overridden with the DML statements, or
even to the array type definition.
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APPENDIX: STORAGE LAYOUT LANGUAGE SYNTAX

We briefly summarize the array storage layout language. It
extends the insert statement, so this is the start symbol.

InsertStatement ::=
insert into Name values ArrayExpr
(StorageDirectives)?

StorageDirectives ::= RegularT
| AlignedT | DirT | AoiT | StatT

RegularT ::= tiling regular TileConf
(tile size Int)?

AlignedT ::= tiling aligned TileConf
(tile size Int)?

DirT ::= tiling directional SplitList
(with subtiling (tile size Int)?)?

AoiT ::= tiling area of interest
BboxList (tile size Int)?

StatT ::= tiling statistic TileConf
(tile size Int)?
(border threshold Int)?
(interest threshold Float)?

TileConf ::= BboxList (,BboxList)+
BboxList ::= [ (Int:Int) (,Int:Int)+ ]
Index ::= index IndexName
Storage ::= storage StorageType (Comp)?
StorageType ::= array | tiff | jpeg

| png | hdf | dem | csv | ...
Comp ::= compression CompType
CompType ::= zlib | rel | packbits

| wavelet WavName | ...
WavName ::= haar | qhaar | ...
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