Communication Architecture in rasdaman
Alex Dumitru dumitru@rasdaman.com
Vlad Merticariu merticariu@rasdaman.com
03.03.2014

Current status
Currently, there are two types of communication systems in rasdaman:
· Internal communication: Messages exchanged between rasmgr and rasserver, or rascontrol and rasmgr and others. All the processes involved here are on the same machine.
· Transport:
· Process signals
· RNProtocol
· Encoding
· String
· RNPEncoding
· External communication: Messages exchanged between rasmgr/rasserver and clients. Processes may be running on different machines.
· Transport:
· RNProtocol
· Encoding
· RNPEncoding
The following diagram provides an overview of the architecture:
[image:]
Current Issues
· No message queue. If messages arrived and cannot be processed, they are discarded. Example: Two queries arrive at rasmgr (which is configured with only one rasserver) at same time. One of them will be discarded instead of being queued and sent for processing when rasserver is again free.
· Unstable internal communication. The internal messaging system used between rasmgr and rasserver is plagued by bugs. A simple test, executing 10 queries in parallel on a rasdaman installation with 32 rasservers, will answer correctly to only 4, the rest are discarded due to various race conditions bugs.
· Thread safety in client library. This is currently achieved through a series of unorthodox measures so that it can be compatible with the RNProtocol.
· Non-standard Encoding. Different processes use different methods of encoding, no coherent message structure. Furthermore, the encoding is manually made and highly inflexible.
· Performance. A lot of time is wasted sending messages back and forward between all the processes involved. The dataflow is the following:
[image:]
Proposed architecture
· One transport method, one encoding for all messages. Let the libraries do the dirty work for us.
· Transport: zeroMQ http://zeromq.org/ - simple overview: http://www.slideshare.net/pieterh/overview-of-zeromq
· Extremely fast (8 million messages / second)
· Handles both internal and external communication
· Supports client queues
· Support for over 40 programming languages
· Encoding: Protobuffers https://developers.google.com/protocol-buffers/ - any data structure to binary string
· Very fast encoding / decoding (couple of nanoseconds)
· Good compression (minimal size for data structures)
· Allows for the data structure to be extended
· [image:]Proposed workflow:

· Overview of architecture:
[image:]

Advantages
· Fixes all the current issues listed above.
· Performance – less messages needed to be exchanged, faster message protocols, smaller amounts of data to be transferred.
· Stability – libraries proven to work in large companies (Google, Financial trading companies etc).
· Extensibility – new messages can be easily added, plenty of documentation and support online for developers.
· Less code – would reduce the codebase significantly and we would have less components to administer (RNProtocol).
· Scales well – excellent support for multi-threading, client queues.
[bookmark: _GoBack]
image3.jpeg
eraction rasmarzeromq] i rasmorzeroma |

Client rasmar Tasserver

1: OpendB !

2 Put clent in queue

le—1

le—1

|
|
|
|
|
|
3 Check free servers.Wat urt you have gne
|
|
4 Opened. Rasserver address sent I
|
|

image4.png
rasmgr

Proto Buffer
oma

Omg

decode

rasserver‘

rasserver

decode

Java Client

C++ Client

image1.png
String

RNP. Er\coﬂed‘

[decode1

rasmgr

s R

sty
%N
&

G,

rasserver ‘

rasserver

[decodez

Java Client

C++ Client

image2.jpeg
eraction rasmanEx [i rasmoritent |

1: openDBfake]

T
N

3 opened(actually not)

4 openDBlreal)

2 chec

le—1

ok free server

Window

of

opportuniy for
race condtions

7: send rasserver address

8 openTAlexecuteCuery

5. chec

le—1

ok free server

6: assign clent

